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This paper is devoted to a theoretical analysis of counter-current gas–liquid wavy film flow between ver-
tical plates. We consider two-dimensional nonlinear waves on the interface over a wide variation of
parameters. We use the Navier–Stokes equations in their full statement to describe the liquid phase
hydrodynamics. For the gas phase equations, we use the Benjamin-Miles approach where the liquid
phase is a small disturbance for the turbulent gas flow. We find a region of the superficial velocity where
we have two solutions at one set of the problem parameters and where the flooding takes place. We cal-
culate the flooding dependences on the gas/liquid physical properties, on the liquid Reynolds number and
on the distance between the plates. These computations allow us to present the correlation for the onset
of flooding that based on the fundamental equations and principles.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Theoretical studies of film flows began with the classical work
of Nusselt (1916), where he obtained exact solution of the Na-
vier–Stokes equations for a thin viscous layer falling down a
smooth vertical wall. The pioneering works of Kapitza (1948) and
Kapitza and Kapitza (1949) followed this where they considered
both experimentally and theoretically the different wavy flow re-
gimes both in the presence and absence of interfacial shear. There
are many theoretical and experimental papers devoted to the non-
linear waves on the surface of a free-falling liquid film (see, for
example, Jones and Whitaker, 1966; Chu and Dukler, 1974; Ale-
kseenko et al., 1985; Joo et al., 1991; Liu et al., 1993; Lee and
Mei, 1996) where a complicated structure of the wavy film flow
was revealed. We mention here some of the features: (a) the exis-
tence of both spatial and temporal evolution of the film flow; (b)
the transition of two-dimensional waves into three-dimensional
structures; and (c) the existence of qualitatively different film flow
regimes. Interfacial shear for a counter-current liquid–gas flow
gives an additional interesting and technically important phenom-
enon – flooding. Semenov (1944) was the first who observed this
phenomenon experimentally. Thin layer of water falls down as a
film inside the glass vertical tube of D = 8, 13.8 and 22 mm in the
experiments. The counter-current air velocity increases from
0 m/s and up to 35 m/s. He concluded that below the air velocity
of 3–3.5 m/s (for tube of D = 13.8 mm), the gas flow had no effect
ll rights reserved.
on the liquid film wavy structure. Above the air velocity 4 m/s,
the waves amplitude increased and at 7.3 m/s (for D = 13.8 mm),
he observed flooding. A great number of works have been devoted
to the prediction of the flooding for different liquids and gases and
for different channels. There are many correlations in the literature
to explain the flooding where the liquid changes direction (see, for
example, the reviews by Dukler and Smith (1977), Tien and Liu
(1979), Drosos et al. (2006)). The general problem is that ‘‘the cor-
relations are unable to predict flooding under conditions signifi-
cantly different from the ones used to construct the correlations
in the first place” (Maron and Dukler, 1984; Zapke and Kröger,
2000b). Most of the papers devoted to flooding are experimental
measurements and observations. We mention here some of the
experiments in vertical rectangular channels. Lee and Bankoff
(1984) conducted flooding experiments in a rectangular channel
using steam-water counter-current flow. They indicated the signif-
icant effect of the channel gap on flooding. Biage and Delhaye
(1989) studied the case of air–water flow in a wide vertical channel
with a relatively large gap. They showed that the onset of flooding
is associated with droplet entrainment. Zapke and Kröger
(2000a,b) studied the dependence of flooding on duct geometry
and on gas/liquid physical properties. They used water, methanol,
propanol, air, argon, helium and hydrogen as working fluids and
demonstrated that the flooding gas velocity was strongly depen-
dent on duct height and fluid densities. They discussed a validity
of different flooding correlations and suggested new equation to
correlate their data based on the Froude and Ohnesorge numbers.
Vlachos et al. (2001) reported flooding data obtained in a vertical
rectangular channel with 5 and 10 mm gap. Sudo (1996) carried
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Fig. 1. Scheme of counter-current gas/liquid flow.
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out experiments in channels with gap and width 2.3–12.3 mm and
33–66 mm, respectively, and reported that the role of channel gap
is very important. Drosos et al. (2006) reported data obtained in a
vertical channel with 10 mm gap using air and three liquids (water,
1.5% and 2.5% aqueous butanol solutions). They presented results
of visual observations, instantaneous local film thickness data,
and shear stress data obtained by use of an electrochemical tech-
nique. The onset of flooding in their experiments was defined as
‘‘the condition where at least part of the liquid flow is reversed
in direction and carried above the liquid entrance section, even
in the form of droplets” (Hewitt, 1995). For the air/water system
they measured the onset of flooding around 8–12 m/s, depending
on the value of Re, and demonstrated that the superficial gas veloc-
ity at the onset of flooding decreases with the liquid Reynolds
number increasing.

There are only a few theoretical works where the counter-cur-
rent gas–liquid flow with a wavy interface is considered. Demekhin
et al. (1989), using integral equations for the liquid phase, consid-
ered the gas turbulent flow as ‘‘pseudo-laminar” (Benjamin, 1959;
Miles, 1957) to obtain the gas reaction to the liquid hydrodynam-
ics. They computed the t-evolution of the initial x-periodical dis-
turbances of the film thickness at different values of the
nondimensional shear. At some value of the shear stress, they ob-
served a dramatic increasing of the disturbances amplitude during
the time evolution. The averaged film thickness is held constant in
their calculations and the averaged liquid flow rate varies during
the time-evolution.

The goal of the present work is to study different steady-state
traveling regimes of counter-current gas–liquid film flow. To de-
fine the flooding onset quantitatively, we need to analyze the wave
structure changes when the problem parameters will be close to
the critical parameters measured experimentally. A theoretical
model for the onset of flooding provides the capability to analyze
the flooding dependence on channel geometry and on liquid/gas
physical properties. The averaged liquid flow rate is held constant
in present calculations of nonlinear waves, which is important fea-
ture of the obtained results. The onset of flooding is a limiting fac-
tor in the operation of various types of devices used by the
chemical industry (for example, two-phase plate heat exchangers
and compact reflux condensers). The flooding prediction will be
interesting for many applications.
2. Governing equations

Using a rectangular coordinate system, the Navier–Stokes
equations with the corresponding boundary conditions describe
the counter-current gas–liquid wavy film flow between vertical
plates (see Fig. 1). We consider the liquid wavy film flow as a
small disturbance for the turbulent gas flow between the plates.
In this case, the gas velocities and pressure have form
ug ¼ ug

b þ ûg , vg ¼ v̂g , Pg ¼ Pg
b þ P̂g , where the ug

bðyÞ, Pg
bðxÞ corre-

spond to a basic solution of the turbulent gas flow through a
smooth channel and the values ûgðx; t; yÞ, v̂gðx; t; yÞ, P̂gðx; t; yÞ cor-
respond to the gas flow perturbations due to the thin liquid film
falling down the channel wall. The liquid phase governing equa-
tions, the boundary conditions on the wall and along the inter-
face, the linearization of the gas phase equations near the basic
solution and the symmetry conditions along the channel middle
are as follows:
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@ûg

@t
þ ug

b

@ûg
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@2ûg

@y2 þ e2 @
2ûg
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Here u is the liquid velocity component in the gravity direction, v is
the liquid velocity in the y-direction, P is the pressure in the liquid,
rik is the stress tensor components in liquid, and H(x, t) is the
instantaneous local film thickness. The stress tensor components
in gas are rg

ik, nk and si are the components of normal and tangential
unit vectors to the interface, respectively. The interface curvature
radius is R and we assume summing over repeated indexes in the
boundary conditions.

Eqs. (1)–(12) are in a nondimensional form and we used scales
as follows (asterisk denotes the dimensional variables):
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Here m, l is the liquid kinematic and dynamic viscosity, respec-
tively, q is the liquid density, r is the surface tension. The wave per-
iod is L, Fi is the film number, H0 and u0 is the Nusselt’s film
thickness and velocity, respectively. The liquid Reynolds number
is Re = ULSDe/4m, where ULS = QL/S is the liquid superficial velocity,
De = 4S/p is the equivalent hydraulic diameter (De = 2D), p is the
channel wetted perimeter, QL is the volumetric liquid flow rate sup-
plied per the channel cross-section S, D is the distance between the
vertical plates. The gas kinematic and dynamic viscosities are mg, lg,
respectively, qg is the gas density, Reg is the gas Reynolds number
and ug

0 is a half of the gas superficial velocity UGS (ug
0 ¼ 0:5UGS ¼

0:5QG=S, QG is the volumetric gas flow rate supplied per the channel
cross-section).

Eqs. (1) and (2) and (9) and (10) represent the momentum con-
servation for the liquid and gas phase, respectively. We use the
mean-velocity profiles ug

bðyÞ and ûgðx; t; yÞ for both the basic and
disturbed turbulent gas flow. The gas phase pulsations generated
by the wavy film surface are small and we omit them in Eqs. (9)
and (10). Miles (1957) and Benjamin (1959) were the first who
considered the turbulent gas flow over a wavy boundary and
who formulated the ‘‘quasi-laminar” approach. Eqs. (3) and (11)
is the mass conservation law for the liquid and gas, correspond-
ingly. Eqs. (4) and (8) are the no-slip conditions on the plate and
on the interface, respectively. Eq. (5) is a kinematic condition along
the interface. Eqs. (6) and (7) formulate the tangential and normal
stress equilibrium along the interface, correspondingly. We sug-
gest that the wavy film surface is a small disturbance for the gas
turbulent flow and use an expansion of the gas phase boundary
conditions in Eqs. (6)–(8). There is a symmetry of the two-phase
flow with respect to the channel middle and Eq. (12) is the symme-
try condition.

Further, we consider the steady-state traveling solutions
of Eqs. (1)–(12) – Hðx1Þ;½ uðx1; yÞ;vðx1; yÞ; Pðx1; yÞ; ûgðx1; yÞ; v̂gðx1; yÞ;
P̂gðx1; yÞ

i
, x1 � x� ct, c is the wave phase velocity. We suggest that

the gas superficial velocity is much high than the liquid film veloc-
ity, n� 1. In this case, we neglect terms 1
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1
n ujy¼H and 1

n v jy¼H of the no-slip conditions (8) is a negligible value.
We solve Eqs. (8)–(12) independently from the governing equa-
tions of the liquid film flow (see Appendix A for details). This is a
linear system where the Fourier harmonic Hk of the film thickness
H(x1) generates the corresponding gas reaction ðFkðyÞ; Pk

gðyÞÞ.
Taking into account Eq. (11), the perturbation fields ûg ; v̂g ; P̂g

are as follows:
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Thus, we reduce the two-phase problem to the solving of the liquid
film flow Eqs. (1)–(5) with the modified boundary conditions (6)
and (7) (see Appendix A) where we take into account the turbulent
gas reaction to the wavy interface. The free surface shape is un-
known beforehand and the coordinates transformation x1 = x � ct,
g = y/H allows us to define the flow area: x1 e [0, 1], g e [0, 1]. We
use spectral method to obtain the steady-state solutions of Eqs.
(1)–(7) and Appendix A gives the numerical algorithm details.

There are eight parameters in Eqs. (1)–(12) – e, e2, el, eq, n, Fi, Re,
Reg. It is easy to see that n ¼ e2el

eq
Reg

Re and only seven parameters are

independent. We will use kneut=L, Ka, Re,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r=qgð1� eqÞ

p
=D, el, eq,

Reg as the independent parameters for the calculations below,
where kneut is the wavelength of the neutral disturbance of the
wavyless solution and Ka � Fi1/11, Ka is the Kapitsa number. It is
evident that kneut ¼ H0f ðKa; Re;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r=qgð1� eqÞ

p
=D; el; eq; RegÞ

and the equations parameters may be defined using our

independent parameters – e ¼ ðH0=kneutÞðkneut=LÞ, e2 ¼ ð3Re=KaÞ1=3

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r=qgð1� eqÞ

p
=DÞ=Ka3=2.

Our choice of the independent parameters set has several
advantages. Values of the parameters Ka,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r=qgð1� eqÞ

p
=D, el, eq

depend only on the liquid/gas physical properties and on the gas
channel geometry. Only values of the parameters Re and Reg vary
with the liquid/gas flow rate changing. Choice of the value kneut=L
as the independent parameter allows us to compare the results
of the Navier–Stokes calculations with the predictions of different
integral and asymptotic approaches where the value of the neutral
wavelength is different.

Let us draw attention that the averaged liquid flow rate is held
constant in our calculations. Taking into account the kinematic
condition (5) and the no-slip conditions (4) the integration of the
continuity Eqs. (3) gives

qðx1Þ � cHðx1Þ ¼ const ¼< q > �c < H >¼ 1� c < H >;

qðx1Þ � Hðx1Þ
Z 1

0
udg:

Here <� � �> is the value averaged over a wavelength. We use this
equation in our computations of the steady-state solutions (see
Appendix A). The constant-flux formulation corresponds to the
experimental situation. This formulation is much closer to the real-
ity where the mass conservation takes place during a spatial–tem-
poral evolution.

3. Results of the calculations

Fig. 2 demonstrates the main characteristics of the nonlinear
steady-state solutions that branched from the basic solution at
three values of the superficial gas velocity. We present also the
wavy profiles of the solution film thickness and the contour lines
of the streamline function Wðx;gÞ ¼

R g
0 ðc � uÞHdg0 in a moving

coordinate system. The liquid particle trajectory coincides with
the contour lines in a coordinate system moving with the solution
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phase velocity. The computations correspond to air/water system
Ka = 9.2615, el = 0.0182, eq = 0.0012,

ffiffiffiffiffiffiffiffiffiffiffiffi
r=qg

p
=D ¼ 0:2765 at Re =

5. At small value of UGS = 3 m/s, the nonlinear solutions are close
to the waves on the surface of a liquid film freely falling down un-
der an action of gravity (see paper by Trifonov (2008)). In this case,
the ‘‘long wave” looks like a succession of ‘‘solitary dips” (see
Fig. 2b). At moderate value of UGS = 6 m/s, we found that the ‘‘long
wave” of the family branched from the trivial solution looks like a
succession of ‘‘solitary humps” (see Fig. 2c) and the interfacial
shear changes qualitatively the solution type. At large value of
UGS = 10.6 m/s, the family branched from the basic solution has
no continuation into the region of ‘‘long” waves. The waves dem-
onstrate a rapid increasing of the maximal film thickness starting
from a finite value of the wavelength (see line 3 in Fig. 2) and
the contour lines of the streamline function demonstrate an inter-
nal vortex (see Fig. 2d).

Thus, there are the values of the superficial gas velocity where
we have no steady-state traveling solutions with small values of
kneut=L. Minimal value of these velocities will correspond to the on-
set of flooding. We start with the ‘‘long wave” (kneut=L ¼ 0:15) at
moderate value of the superficial gas velocity and, using a contin-
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uation method, we increase (or decrease) values of UGS to obtain
dependences in Fig. 3. We carry out these computations for two
values of the liquid Reynolds number (Fig. 3a and b) and for three
different systems – air/water, helium/water (el = 0.02, eq =
0.0001653) and hydrogen/water (el = 0.00886, eq = 0.0000833). In
Figs. 4–6, we present the wavy profiles of the solution film thick-
ness and the contour lines of the u(x, g) component velocity (in a
laboratory coordinate system). With the superficial gas velocity
increasing, the wave amplitude increases as it shown in Figs. 3–
6. At the same time, the wave velocity decreases with increasing
in UGS. The u-velocity distribution in Figs. 4–6 demonstrates a re-
gion of flow reversal near the film thickness minimum at small
and moderate values of UGS. At large value of UGS, the negative u-
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and this is why we call the point (Uf
GS) as the ‘‘returning point”.

There are two solutions in a small neighbourhood of the ‘‘returning
point” at one value of the superficial velocity. We obtain the
‘‘returning points” for all values of the liquid Reynolds number
considered in the paper and for all values of the distance between
the plates and the gas/liquid physical parameters. Further, we con-
sider the ‘‘returning point” as a definition of the onset of flooding.

In accordance with the nondimensional parameters of our
equations, the flooding curve is a function of five variables and
has the form as follows:

Regf ¼ Regf ðRe;Ka;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r=qgð1� eqÞ

q
=D; el; eqÞ:

We compute the flooding curves over a wide range of the indepen-
dent parameters using a continuation method. We present these
results in Figs. 7 and 8a by solid lines. To obtain these curves we
start with the flooding point for the air/water system and varying
one of the nondimensional parameters we compute the returning
point Uf

GS. Value of the gas superficial velocity is an additional un-
known and we solve an equation dc/dUGS = 0 simultaneously with
Eqs. (A1)–(A12) to find the flooding curves. The systematic compu-
tation of the flooding curves allows us to suggest correlation:

Regf ¼ Uf
GSDe

4mg
¼

2:35e0:37
q Ka2:37

e0:73
l Re0:03ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r=qgð1� eqÞ

p
=DÞ1:15 : ð16Þ

We use a special numerical algorithm to obtain the values of the
coefficient and five powers in this equation. To find six unknowns
we minimize the deviation between the curves in Figs. 7 and 8a
and the predictions of equation where the coefficient and five pow-
ers are variables. We use all array of individual points ðRegf

calcÞi of the
onset of flooding calculated using fundamental Eqs. (A1)–(A12).
Total amount of the points to plot curves in Figs. 7 and 8a is around
seven hundreds (i = 1, 2, . . . , 700). Thus, we look for the minimum
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of function of six variables that can be expressed as a sum of
squared functions:

Wðb; b1; . . . ; b5Þ ¼
X700

i¼1

Regf
pred � Regf

calc

� �2

i
;

Regf
pred ¼ beb1

q Kab2eb3
l Reb4 ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r=qgð1� eqÞ

q
=DÞb5 :

We calculate ðRegf
predÞi at the same values of eq; Ka; el; Re;



ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r=qgð1� eqÞ

p
=DÞ� as the corresponding values of the parameters

of point i in Figs. 7 and 8a.
Comparisons between the Figs. 8b and 7c and between the

dashed and solid lines in Fig. 8a demonstrate validity of the ob-
tained six coefficients. Let us emphasize that we do not use any
experimental data to define coefficients in Eq. (16). We extract
them from the computations based on the fundamental equations
and principles.

There are many correlations in literature where the authors
present the empirical flooding dependences in terms of dimension-
less velocities U�G � Uf

GS
ffiffiffiffiffieq
p

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gDð1� eqÞ

p
, U�L � Uf

LS=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gDð1� eqÞ

p
.

Drosos et al. (2006) describe their water data on the onset of flood-
ing using the Wallis-type expression:

ffiffiffiffiffiffi
U�G

q
þ 0:708

ffiffiffiffiffiffi
U�L

q
¼ 1:136:

Zapke and Kröger (2000b) based on the results of experiments with
different fluids propose another type of the correlation for a vertical
rectangular duct:

U�G ¼ 0:0742
1

Oh0:15

1
U�L

� �0:2

:

The Ohnesorge number, used in their paper, is Oh �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2=ðqDrÞ

p
¼

Ka�11=4We1=4 and the Weber number is We = r/(qg(1 � eq)D2).
Range of the liquid flow rates in both experiments of Drosos et al.
(2006) and Zapke and Kröger (2000a,b) was 10�3

6 U�L 6 0:062.
There are many correlations in literature where the Kutateladze

number KuG � Uf
GS

ffiffiffiffiffiffi
qg

p
=ðgrðq� qgÞÞ

1=4 is used to describe the on-
set of flooding (see the review by McQuillan and Whalley
(1985)). Pushkina and Sorokin (1969) carried out experiments with
water, glycerine and ethyl alcohol using tubes of different diame-
ters. Range of the liquid flow rates in their experiments was
10�5

6 U�L 6 0:1. To describe flooding data they suggested corre-
lation as follows:
KuG ¼ U�GWe�1=4 ¼ 3:2:

Wallis and Kuo (1976) obtained the correlation KuG = 1.87 for the
onset of flooding using the Bernouilli equations. In accordance with
McQuillan and Whalley (1985) conclusions, the most successful
empirical correlation was that of Alekseev et al. (1972), which
works well over a range of tube diameters, liquid flow rates
ðU�L 6 1Þ and liquid surface tensions:

KuG ¼ U�GWe�1=4 ¼ 0:3

ð1� eqÞ0:11

1
U�L

� �0:22

We�0:095:

In accordance with McQuillan and Whalley (1985), the most suc-
cessful theoretical correlation is a modified form of the correlation
presented by Bharathan et al. (1978):

2f wðU�LÞ
2

ð1� aÞ2
þ 2fiðU�GÞ

2

a2:5 ¼ 1� a; f w ¼ 0:005;

fi ¼ fw þ 14:6ð1� aÞ1:87
:

Here a is a void fraction that can be expressed as a ¼ 1� 4:58�

ðU�LÞ
1=3We1=4Ka�11=12.

In terms of U�G, U�L , Eq. (16) is

KuG ¼ U�GWe�1=4 ¼
4:793e0:27

l

e0:135
q Ka0:463

1
U�L

� �0:03

We�0:0525: ð17Þ

Fig. 9 shows comparison between the correlations for the air/water
system at D = 10 mm. The detailed comparison of Eqs. (16) and (17)
predictions with the experimental data for different liquids and
diameters is a goal of separate investigation. Here we only note that
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with the distance between the plates increasing, the nondimen-
sional flooding velocity U�G decreases in accordance with Eq. (17)
and that agrees with the experimental results of Sudo et al.
(1991) and Vlachos et al. (2001).

There is a limitation of the simplified Benjamin-Miles approach
used in the paper regarding the small liquid-to-gas velocity ratio,
n� 1. This limitation can be written as follows:

n ¼ e2el

eq

Regf

Re
� 1;

Regf

Re
¼

ffiffiffiffiffieq
p

el

U�G
U�L

; e2 ¼
3Re
Ka

� �1=3 ffiffiffiffiffiffiffi
We
p

Ka3=2 ;

n ¼ 3
2

� �1=3 1
Ka11=12

1
U�L

� �2=3 ffiffiffiffiffiffiffi
We
p
ffiffiffiffiffieq
p KuG: ð18Þ

In the case of air/water system and for D = 10 mm, Eqs. (17) and
(18) gives n = 1.95 at U�L ¼ 1, n = 3.16 at U�L ¼ 0:5, n = 9.7 at
U�L ¼ 0:1 and n = 48.2 at U�L ¼ 0:01. We may conclude that the
assumption n� 1 is valid up to the values of U�L � 0:1 for the air/
water system and D = 10 mm. The assumption is valid at higher val-
ues of U�L with the distance between the plates decreasing.

4. Conclusions

We considered the counter-current wavy gas/liquid film flow
between vertical plates. We used the Navier–Stokes equations in
their full statement to describe the liquid phase hydrodynamics.
For the gas phase equations, we used the simplified Benjamin-
Miles approach where the liquid phase is a small disturbance for
the turbulent gas flow. Our goal was to predict theoretically flood-
ing onset using the fundamental equations and principles. We var-
ied the liquid Reynolds number, wavelength and the gas superficial
velocity to see what happening with the steady-state traveling
solutions when the parameters were close to the experimental
flooding condition.

We obtained that there were six independent parameters to de-
scribe the gas/liquid wavy dynamics – Ka, Re, Reg,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r=qgð1� eqÞ

p
=

D, el, eq, Ka ¼ ððr=qÞ3=gð1� eqÞm4Þ1=11 is the Kapitza’s number, D is
a distance between the plates, el = lg/l and eq = qg/q.

We found that with the superficial gas velocity increasing and
starting from some value of the velocity, the waves demonstrate
a rapid decrease of both the minimum film thickness and the phase
wave velocity. At the same time, the maximum film thickness in-
creases and finally the wave structure demonstrates the negative
u-velocities in the neighbourhood of the maximum. At smaller val-
ues of the superficial velocity, the negative u-velocities take place
in the neighbourhood of the film thickness minimum. Both the
wave celerity and the film thickness minimum are still positive
numbers at such values of the superficial gas velocity. The de-
scribed transformation of the wave structure with the superficial
gas velocity increasing takes place for different gas/liquid systems
considered in the paper (air/water, argon/water and hydrogen/
water). We found a region of the ‘‘returning point” of the superfi-
cial velocity where we have several solutions and where the flood-
ing takes place. We did not obtain the steady-state traveling
solutions when the superficial gas velocity is greater than the value
corresponding to the ‘‘returning point”. These findings allowed us
to define the onset of flooding mathematically and to obtain its
dependence on the two-phase flow parameters. We obtained
new flooding correlation that based on the fundamental equations
and principles of the gas/liquid interaction.

Appendix A

We consider the steady-state traveling solutions of Eqs. (1)–
(12). The coordinates transformation x1 = x � ct, g = y/H(x � ct) de-
fines the flow area: x1 e [0, 1], g e [0, 1] and allows us to write the
governing equations as follows (further, we omit the subscript ‘1’):
c
@u
@x
þ gxc

@u
@g
� @P
@x
� gx

@P
@g
þ 1

eRe
3� kf e2eqn2Reþ g2

y
@2u
@g2

"

þ e2 @2u
@x2 þ g2

x
@2u
@g2 þ 2gx

@2u
@x@g

þ ðgxn þ gxgxgÞ
@u
@g

 !#

� gy
@uv
@g
� @u2

@x
� gx

@u2

@g
¼ 0; ðA1Þ

� gy
@P
@g
þ e

Re
g2

y
@2v
@g2 þ e2 @2v

@x2 þ g2
x
@2v
@g2 þ 2gx

@2v
@x@g

þ ðgxn þ gxgxgÞ
@v
@g

 !" #

� e2 �c
@v
@x
� gxc

@v
@g
þ @uv

@x
þ gx

@uv
@g
þ gy

@v2

@g

� �
¼ 0; ðA2Þ

vðx;gÞ ¼ �HðxÞuðx;gÞgx �
@

@x
H
Z g

0
uðx;g0Þdg0

� �
; ðA3Þ

HðxÞ
Z 1

0
ðuðx;g0Þ � cÞdg0 ¼ 1� chHi; ðA4Þ

uðx;gÞ ¼ 0; g ¼ 0; ðA5Þ

P � eqn2P̂g
���
y¼0
¼ 2e

Re
gy
@v
@g
� eln

@v̂g

@y

����
y¼0

 !
1þ e2 dH

dx

� �2

1� e2 dH
dx

� �2

� e2 ð3FiÞ1=3

Re5=3

d2H
dx2

1þ e2 dH
dx

� �2
h i3=2 ; g ¼ 1; ðA6Þ

gy
@u
@g
þe2 @v

@x
þgx

@v
@g

� �
þ4e2gy

@v
@g

dH
dx

1�e2 dH
dx

� �2

¼�kf

2
eqn2Reþeln

@ûg

@y

����
y¼0
þd2ug

b

dy2

�����
y¼0

Hþ4e2@v̂g

@y

����
y¼0

dH
dx

1�e2 dH
dx

� �2

2
4

3
5;

g¼1: ðA7Þ

Here h� � �i is the value averaged over a wavelength, gy = 1/H,
gx = �g(dH/dx)/H, gxg = �gydH/dx, gxn = �gy(gxdH/dx + gd2H/dx2), kf

is the smooth channel friction coefficient for the gas turbulent flow

and the dimensionless value of the basic pressure is Pg
b ¼

kf e2x
e . We

take into account that the basic velocity profile agrees with the fric-

tion coefficient definition –
dug

b
dy

���
y¼0
¼ �0:5kf e2Reg and neqRe =

e2elReg.
Functions H, u, v, P are periodic over the coordinate x and they

are unknowns. We use spectral method to obtain the steady-state
solutions of Eqs. (A1)–(A7):

uðx;gÞ ¼ 1
2

U1ðxÞþ
XM

m¼2

UmðxÞTm�1ðg1Þ;g1 ¼ 2g�1;

UmðxÞ ¼U0
mþ

XN=2�1

k¼�N=2þ1
k–0

Uk
mexpð2pikxÞ; ðU�k

m Þ
� ¼Uk

m; m¼ 1; . . . ;M:

HðxÞ ¼ H0 þ
XN=2�1

k¼�N=2þ1
k–0

Hkexpð2pikxÞ; ðH�kÞ� ¼ Hk:

Here Tm(g1) are Chebyshev polynomials and the ‘star’ superscript
designates complex conjugation.

The numerical algorithm starts with the specification of the ini-
tial approximation for harmonics Uk

m, Hk and for the value of c.
There is a symmetry in the equations with respect to the coordi-
nate shift x ? x + const. The phase of one of the film thickness
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harmonics can be defined beforehand due to this symmetry (for
example Real(H1)=0). The value of the phase velocity c will be un-
known instead of Real(H1).

At (M + 1)(N � 1) known values of Uk
m, c, Hk, the velocity v(x, g)

is unambiguously regenerated from Eq. (A3), P(x, g) – from Eqs.
(A2) and (A6). Using the Newton’s iterative method and Eqs. (A1)
and (A4) transformed into (k, m)-space, we improve the initial
approximation of the unknowns Uk

m; Hk; c
� �

. We use the first or-
der differential scheme to calculate the Jacoby matrix. Taking into
account the boundary conditions (A5) and (A7), we have
(M + 3)(N � 1) nonlinear algebraic equations to obtain (M + 1)
(N � 1) unknown values. The basis functions in the spectral expan-
sion do not satisfy the boundary conditions and that is why the
number of unknowns is less than the number of equations. We dis-
card 2(N � 1) equations corresponding to the last two Chebyshev
coefficients in the expansion of Eq. (A1). The results will be correct
at a good enough accuracy of approximation of the functions u(x, g)
– jUN=2�1

m j= sup jUk
mj < 10�3 at any m, and jUk

Mj= sup jUk
mj < 10�3 at

any k. During the calculations, the corresponding increasing N
and M (we varied value of N from 8 to 256 and value of M – from
5 to 50, depending on the parameters) maintained the indicated
conditions.

To calculate the gas reaction on the wavy liquid film we substi-
tute Eqs. (13)–(15) into the governing Eqs. (8)–(12):

2pikee2Reg d2ug
b

dy2 Fk þ ug
be

2ð2pkÞ2Fk � ug
b

d2Fk

dy2

" #

¼ � d4Fk

dy4 þ 2e2ð2pkÞ2 d2Fk

dy2 � e4ð2pkÞ4Fk; ðA8Þ

dFk

dy

�����
y¼0

¼ dug
b

dy

����
y¼0

; Fk
���
y¼0
¼ 0;

d2Fk

dy2

�����
y¼0:5=e2

¼ Fk
���
y¼0:5=e2

¼ 0; ðA9Þ

Pk
g ¼ ug

b

dFk

dy
� dug

b

dy
Fk � i

2pkee2Reg �
d3Fk

dy3 þ ð2pkeÞ2 dFk

dy

" #
; ðA10Þ

ug
b ¼

�g
ffiffiffiffiffiffiffiffiffiffi
kf =2

q
;g < 8:747=6

�8:74g1=7
ffiffiffiffiffiffiffiffiffiffi
kf =2

q
;g > 8:747=6

8><
>: ; kf ¼ 0:3164

ð4RegÞ1=4 ;

g � e2yReg
ffiffiffiffiffiffiffiffiffiffi
kf =2

q
: ðA11Þ

To find functions Fk(y) we solve these equations numerically for
k = 1, 2, . . . , N/2 � 1. Method uses the Chebyshev-series to solve a
two-point boundary problem (A8) and (A9).

Eq. (A11) are the well-known velocity distribution for the tur-

bulent flow ðug
bÞ
�=v� ¼ 8:74ðy�v�=mgÞ1=7, v� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sg=qg

q
;g � y�v�=mg

and the Blasius formula for the friction coefficient. Here kf is the
friction coefficient and we take into account that the hydraulic
diameter of our duct is 2D. The dimensional pressure and the inter-
facial shear are as follows:

ðPg
bÞ
� � kf

2D
qgU2

GS

2
x� ¼ 2sg

D
x�; sg � lg

dðug
bÞ
�

dy�

����
y�¼0
¼ kf qgU2

GS

8
:

ðA12Þ

Dimensionless value of the basic pressure is Pg
b ¼

kf e2x
e . Velocity pro-

file (A11) agrees with the condition (A12) –
dug

b
dy

���
y¼0
¼ �0:5kf e2Reg .

Eqs. (13), (14), (A9) and (A10) give

@v̂g

@y

����
y¼0
¼ dH

dx
dug

b

dy

����
y¼0

;

P̂g
���
y¼0
¼�

XN=2�1

k¼�N=2þ1

i
2pkee2Reg �

d3Fk

dy3

�����
y¼0

þð2pkeÞ2dug
b

dy

����
y¼0

2
4

3
5Hkexpð2pikxÞ:

We use these equations in our modified boundary conditions (A6)
and (A7) to take into account the gas reaction on the liquid film
hydrodynamics.
References

Alekseenko, S.V., Nakoryakov, V.E., Pokusaev, B.G., 1985. Wave formation on a
vertical falling liquid film. AIChE J. 31, 1446–1460.

Alekseev, V.P., Poberezkin, A.E., Gerasimov, P.V., 1972. Determination of flooding
rates in regular packing. Heat Transfer Soviet Res. 4, 159–163.

Benjamin, T.B., 1959. Shearing flow over a wavy boundary. J. Fluid Mech. 6, 161–
205.

Bharathan, D., Wallis, G.B., Richter, H.J., 1978. Air–water countercurrent annular
flow in vertical tubes. EPRI Report No. EPRI NP-786.

Biage, M., Delhaye, J.M., Vernier, P., 1989. The flooding transition: a detailed
experimental investigation of the liquid film before the flooding point. In: ANS
Proceedings, National Heat Transfer Conference, ANS, pp. 53–60.

Chu, K.I., Dukler, A.E., 1974. Statistical characteristics of thin wavy films. AIChE J. 20,
695–706.

Demekhin, E.A., Tokarev, G.Y., Shkadov, V.Y., 1989. Instability and nonlinear waves
for the vertical counter-current flow of a liquid film and turbulent gas. TOKhT
23, 64–70.

Drosos, E.I.P., Paras, S.V., Karabelas, A.J., 2006. Counter-current gas–liquid flow in a
vertical narrow channel – liquid film characteristics and flooding phenomena.
Int. J. Multiphase Flow 32, 51–81.

Dukler, A.E, Smith, L., 1977. Two phase interactions in countercurrent two phase
flow: studies of the flooding mechanism. US Nuclear Regulatory Commission
Report, NUREG/CR-0617.

Hewitt, G.F., 1995. In search of two-phase flow. In: 30th US National Heat Transfer
Conference, Portland, Oregon.

Jones, L.O., Whitaker, S., 1966. An experimental study of falling liquid films. AIChE J.
12, 525–529.

Joo, S.W., Davis, S.H., Bankoff, S.G., 1991. Long-wave instabilities of heated falling
films: two-dimensional theory of uniform layers. J. Fluid Mech. 230, 117–146.

Kapitza, P.L., 1948. Wave flow of thin viscous liquid films. Zh. Teor. Fiz. 18, 3–28.
Kapitza, P.L., Kapitza, S.P., 1949. Wave flow of thin viscous liquid films. Zh. Teor. Fiz.

19, 105–120.
Lee, S.C., Bankoff, S.G., 1984. Parametric effects on the onset of flooding in flat-plate

geometries. Int. J. Heat Mass Transfer 27, 1691–1700.
Lee, J.J., Mei, C.C., 1996. Stationary waves on an inclined sheet of viscous fluid at

high Reynolds and moderate Weber numbers. J. Fluid Mech. 307, 191–229.
Liu, J., Paul, J.D., Gollub, J.P., 1993. Measurements of the primary instabilities of film

flow. J. Fluid Mech. 250, 69–101.
Maron, D.M., Dukler, A.E., 1984. Flooding and upward film flow in vertical tubes – II.

Speculations on film flow mechanisms.. Int. J. Multiphase Flow 10, 599–621.
McQuillan, K.W., Whalley, P.B., 1985. A comparison between flooding correlations

and experimental flooding data for gas–liquid flow in vertical circular tubes.
Chem. Eng. Sci. 40, 1425–1440.

Miles, J.W., 1957. On the generation of surface waves by shear flows. J. Fluid Mech.
3, 185–204.

Nusselt, W., 1916. Die Oberflächenkondensation des Wasserdampfes. Teil I, II. Z. VDI
27 (28), 569–576.

Pushkina, O.L., Sorokin, Y.L., 1969. Breakdown of liquid film motion in vertical tubes.
Heat Transfer Soviet Res. 1, 56–64.

Semenov, P.A., 1944. The liquid flow of thin layers. Zh. Tehn. Fiz. 14, 427–437.
Sudo, Y., 1996. Mechanism and effects of predominant parameters regarding

limitation of falling water in vertical counter-current two-phase flow. J. Heat
Transfer (Trans. ASME) 118, 715–724.

Sudo, Y., Usui, T., Kaminaga, M., 1991. Experimental study of falling water limitation
under a counter-current flow in a vertical rectangular channel (1-st report,
effect of flow channel configuration and introduction of CCFL correlation). JSME
Int. J., Series II 34, 169–174.

Tien, C.L., Liu, C.P., 1979. Studies on vertical two phase countercurrent flooding.
Electric Power Research Institute Report, NP-984.

Trifonov, Y.Y., 2008. Wavy film flow down a vertical plate: comparisons between
the integral approaches results and the full-scale computations. J. Eng.
Thermophys. 17, 30–52.

Vlachos, N.A., Paras, S.V., Mouza, A.A., Karabelas, A.J., 2001. Visual observations of
flooding in narrow rectangular channels. Int. J. Multiphase Flow 27, 1415–1430.

Wallis, G.B., Kuo, J.T., 1976. The behaviour of gas–liquid interfaces in vertical tubes.
Int. J. Multiphase Flow 2, 521–536.

Zapke, A., Kröger, D.G., 2000a. Counter-current gas–liquid flow in inclined and
vertical ducts – I: flow patterns, pressure drop characteristics and flooding. Int.
J. Multiphase Flow 26, 1439–1455.

Zapke, A., Kröger, D.G., 2000b. Counter-current gas–liquid flow in inclined and
vertical ducts – II: the validity of the Froude-Ohnesorge number correlation for
flooding. Int. J. Multiphase Flow 26, 1457–1468.


	Flooding in two-phase counter-current flows: Numerical investigation of the gas–liquid wavy interface using the Navier–Stokes equations
	Introduction
	Governing equations
	Results of the calculations
	Conclusions
	Appendix A
	References


